Contronika Sense it

INTERFACE HOMME MACHINE DU FUTUR : COMMENT L'HAPTIQUE INNOVE POUR L'INDUSTRIE AUTOMOBILE ?

> Adrien VIVES Business Developer

• Présentation de l'haptique

- Applications by Actronika
- Open discussion

• Présentation de l'haptique

L'HAPTIQUE C'EST LE SENS DU TOUCHER

TOUCH = TRUST

NEW TRENDS

- The recent boom in the digitalization of society and the constant increase of "smart devices" is redefining the current state of Human-Machine Interfaces.
- HMIs are now more than ever in **need of new modalities to convey information**.

NEW PROBLEM

We live in a world of tactile experiences...

"Touch comes before sight, before speech. It is the first language and the last, and it always tells the truth." —Margaret Atwood

Yet, the sense of touch is not stimulated

"I don't want people to sit there and objectively watch the film. I want them to experience it as something that's under their skin, so you try to make the films really tactile." — Danny Boyle

New HMI's will need new interactions

HD Haptics can bring essential sensations to users on any interfaces. Haptics will help drivers and passengers have a safer, more convivial environment.

Haptics is not new, but HD Haptics is.

market.

gamepads, huge replacement market opportunity HD Haptics emulates real life like sensations, through the association of hand-crafted effects and hand detection algorithms. HD Haptics brings a whole new sense to the digital interfaces.

Technology Scan

	Electrodynamic <u>Motors</u>	Piezo-electric plates and bars	Dielectric electroactive Polymer	lonic <u>Electroactive</u> Polymers	Variable reluctance Motors	Nonlinear Acoustics	Plate Electrodes
Physics	Coils interacting with magnetic fields.	mensional change in a ramic material ten exposed an electric ld	Large deformation of soft gel layer under electrostatic attraction/repulsion.	lon migration in a gel causing dimensional changes.	Magnetic circuit broken by an air gap.	A high power ultrasonic acoustic wave meets a boundary creating a net, weak force owing to the nonlinear behavior of air.	Electrostatic force between plates of surface.
Advantages	 Mature Commonly industrialized Wear-free Linear Steady improvement of permanent magnet technology Numerous arrangement Low Voltage Little intrinsic bandwidth limit Packageable 	Can be very inexpensive in mass production Can displace stiff or heavy loads	 Astonishing at first sight Fast 	• Astonishing at first sight	 Mature Commonly industrialized Wear-free No need for permanent magnets High power density Good at dc Low voltage Packageable Miniaturize 	 Astonishing at first sight Steerable in mid-air 	 Can be integrated in solid state structures Highly miniaturized
In Haptics	 Miniature Eccentric Rotating Masses ERM Single frequency linear resonant actuators LRA Dc Motors Vibrotactile transducers All industrialized today 	Refreshable Braille Vibrating Screen, unsuccessful yet Ultrasonic standing waves in glass for friction modulation (on- going)	 Laboratory demonstrations Realisation of soft interfaces such as straps Industrially unsuccessful yet 	Early Laboratory demonstrations.	 Rendering of shocks Industrialized 	 In development Develoment kits marketed Few industrial prototypes 	 Used to attract skin to stick to glass Development kit marketed Few industrial prototypes
Mass Application	Commonly found in industrial applications : • Loudspeaker • Storage drives • Dc motors • Etc	Monomorphic disks in buzzers Bimorphs for larger displacements Tweeters	• None	None	Commonly found in industrial applications : • Solenoids • Relays • Stepper motors • Etc	• None	 Light steering mirros in arrays in projectors 17

COMPETITION SCAN

5		成 瑞声科技 AAC TECHNOLOGIES	49	immersion	Ultrahaptics Jeding Notheast Guarding	Touch. Click. Feel.	<u>Senseg</u>	haption	ВеВор	1 haptics	hap2U	IMMERZ	HARDLIGHT VR Feel Virtual Reality	
HD Haptics Ready	\checkmark	X	×	×	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	X	\checkmark
Integrated Platform (HW/SW)	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Scalable Technology	\checkmark	\checkmark	\checkmark	×	×	\checkmark	 	×	\checkmark	\checkmark	\checkmark	\checkmark	X	X
Form Factor	\checkmark	\checkmark	\checkmark	×	X	\checkmark	\checkmark	×	\checkmark	×	\checkmark	×	X	\checkmark
P	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			X

Our proprietary hardware

Creating effects is our main expertise

nnovation through Facilitated Integration

Hardware

Cutting-edge proprietary haptic Actuators, featuring an impressive bandwidth.

ِرَّ> ا

Firmware

Our embedded chips allow you to store effects and control the Actuators.

Software

Our Library of HD Haptic Effects is tailored, precise and true-to-life.

Research

Based on our CTO's 30 years of research, we are leading innovation in the field. tactronik M

Integration

Our comprehensive Tactronik platform enable the incorporation of HD Haptics into any new device, no matter the level of technical complexity.

• Applications by Actronika

b Company Purpose

Our mission

To improve safety in the automotive sector through intuitive humanmachine interaction tools

- French hi-tech Company founded in 2014, funded in 2016, based in Paris
- Strong team of 15 members and a reputable advisory board
- Revenues for $\in 0.6M$ in 2018 and a total of $\in 2.4M$ in private funding to date
- Three patents filed covering the Tactronik® vibrotactile technology

Team

Gilles Meyer CEO

Manager with 19+ years of experience as CEO or Director of more than 10 companies

Financials partners

Rafal Pijewski CTO

10+ years of experience in mechanical design, manufacturing processes and industrial standards

Vincent Hayward Chief Scientific Officer

Professor of Intelligent Systems and Robotics. 30+ years of experience in haptics, tactile perception and technologies

Mechanical, Electronic and Marketing team

Team of 15 dedicated members, with expertise in embedded systems engineering, mechatronics, ergonomics and marketing strategy.

Example: The haptic seat

Problem

- 30% car accidents occur due to driver distraction
- Alert time of standard Advanced Driver-Assistive Systems (ADAS) is too long (1s) to generate an effective reaction
- Current ADASs emit **annoying sounds** and produce rudimentary, **unpleasant effects**. Many drivers disable these systems.
- Only 2% of vehicles on the roads currently have standard ADAS due to poor efficiency and high prices

Solution

Tactronik® is a unique ADAS platform integrated in car seats that makes drivers intuitively aware of unexpected hazardous driving conditions, thus reducing user reaction time and improving drivers' safety.

Tactronik®

Next generation technology in road safety

<u>Actronika</u>

Conclusion

actronika

Key takeaways

Reduces the risk of car accidents by 50-55% Multi-billion market opportunity Affordable solution for haptic technology in ADAS Existing traction with key market players: Novares, FCA, Daimler and Faurecia

We keep in touch with trust at all development levels

LEVEL 0-1

Helps the driver **keep their eyes on the road** Create a **strong feeling of trust** between the user and the car

LEVEL 2-3

LEVEL 4-5

Focus on user experience: wellness, passenger entertainment

"To **avoid a feeling of fear** brought about by a lack of control, self-driving cars need to better communicate with passengers" *Gemma Wharton, Autonomous Vehicle Control engineer, Jaguar Land Rover*

> "By enhancing the HMI, automotive companies are able to create not only smarter and more streamlined interiors, but also a more **trustworthy** transition into autonomy" *Luke Edwards, About smart surfaces in the Automotive Interiors World, May 2019*

Open discussion

VISION/HEARING

AND NOW...

TOUCH

actronika SENSE IT

Adrien VIVES Business Development +33 6 30 75 99 91 +33 9 66 98 77 32 adrien.vives@actronika.com