

Dr. Farid ZIDAT, Senior Application Engineer, Altair Engineering, Grenoble, France fzidat@altair.com

This Work has been actively supported by

Dr. Patrick Lombard, Lead Application Specialist Manager, France
Dr. Abdessamed Soualmi, Application Specialist, France
Thomas Lehmann, Project Manager, Germany

ALTAIR AT A GLANCE

Founded 1985
Headquartered in Troy, MI US

69offices

in 24 countries

\$313M

2016 Revenue

50+
ISV partners under our unique, patented licensing model

2000+

Engineers, scientists and creative thinkers

5000+

Customer installations globally

60,000+

Users

OUTLINE

- Altair Simulation-Driven Design and Solutions for E-Motor Development
- The Porsche E-Motor Development Study
 - Overview
 - Phase 1 Early Concept Design
 - Phase 2 Multi-Disciplinary Development
 - Phase 3 Consideration of Powertrain Components using Systems Modeling
- Summary / Conclusions

ALTAIR SIMULATION-DRIVEN DESIGN

- MULTI-PHYSICS E-MOTOR DESIGN -

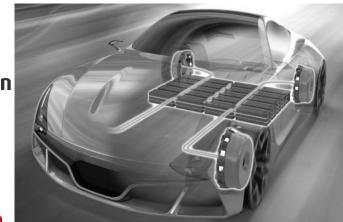
Altair Simulation Driven Design

Porsche E-Motor Development Study

Phase 1

Phase 2

Phase 3


Summary & Conclusions

SIMULATION-DRIVEN DEVELOPMENT FOR E-MOBILITY

E-Mobility creates opportunities to radically change the way components and systems are developed.

Packaging and integration are facilitators

Simulation-Driven Design

optimally supports the realization of design improvement opportunities arising from E-mobility

Altair E-Mobility Priorities

E-Motor Design:

Fulfilling more and higher requirements in shortened development cycles

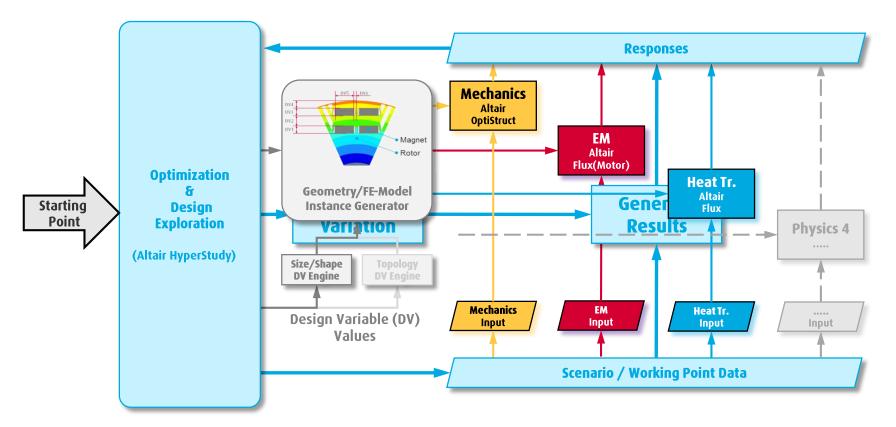
Battery Development:

Efficient Integration of Battery Frame into Vehicle Structure

Powertrain Integration:

Dimensioning and Integration of E-Powertrain Subsystems into an optimal E-Powertrain

Cable Simulations:


Determining the optimum installation path for cable harnesses and their best shielding

EMC - Electromagnetic Compatibility:

Examining the influence of external and internal interference sources on installed devices and cables

GENERIC MULTI-PHYSICS E-MOTOR DESIGN ENVIRONMENT

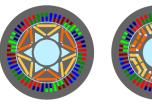
THE PORSCHE E-MOTOR DEVELOPMENT STUDY

- OVERVIEW -

Altair Simulation Driven Design Porsche E-Motor Development Study

Phase 1

Phase 2


Phase 3

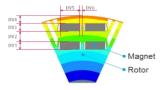
Summary & Conclusions

PORSCHE - E-MOTER DESIGN PILOT STUDY - PHASES

Phase 1 Baseline Concept

Optimization

Optimization of combinations of baseline rotor and stator concepts for given electromagnetic requirements.



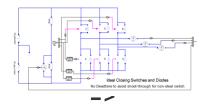
Physics

EM, Structural, Thermal

Design Space

Magnet Shapes

Responses


Power, Torque, Torque Ripples, Max Speed, Losses, Temperatures, Demagnetization, Stress

Scenarios

Individual Working Points

Phase 3 Systems Approach

Addition of Inverter Model

more realistic
Torques and Efficiencies

Altair Activate

PORSCHE DEVELOPMENT REQUIREMENTS

Porsche Design Challenge

Objectives:

- Maximum power (base point)
- Minimize torque ripples

Constraints:

- Demagnetization at base point
- Mechanical strength
- Temperature of winding lower than 200°C

The stator is imposed. The rotor design is open in any direction, meeting the requirements

Requirements:

- Iron fill factor: 0,92
- Magnet: Br 1,15
- T_{max} winding: 200°C
- T_{max} rotor: 180°C
- Minimum power: 170kW
- Max phase voltage: 241V
- Max phase current: 300A
- DC-link voltage: 650V, 800V

PHASE 1 - EARLY CONCEPT DEVELOPMENT -

Altair Simulation Driven Design

Porsche E-Motor Development Study

Phase 1

Phase 2

Phase 3

Summary & Conclusions

MOTOR BASELINE CONCEPT PROCESS

Winding ********************** Α Selection Winding Winding Winding Winding **Final Baseline** Concept

	Rotor	Selectio	n	
	Rotor A	Rotor B	Rotor C	Rotor D
Current den (A/mm2)	31,1	31,1	31,1	31,1
Torque (Nm)	181	164	165	162
Power (kW)	195	186	185	180
Base speed (rpm)	10.290	10.830	10.670	10.610
Efficiency (%)	96,0	95,9	95,9	95,7
Magnet weight (Kg)	2,54	2,48	2,48	2,53

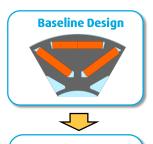
PHASE 2 - MULTI-PHYSICS DEVELOPMENT -

Altair Simulation Driven Design

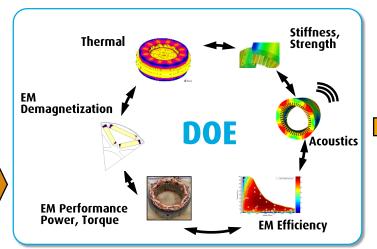
Porsche E-Motor Development Study

Phase 2

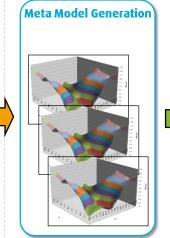
Phase 1


Phase 3

Summary & Conclusions


MULTI-DISCIPLINARY/PHYSICS OPTIMIZATION - GENERIC **OVERVIEW**

Optimization Process Execution Time Line



Study Preparation

Define DVs **Define Responses Define Targets Define Study**

XN number of samples

Targets / DV Bounds

Opt. Problem (Example)

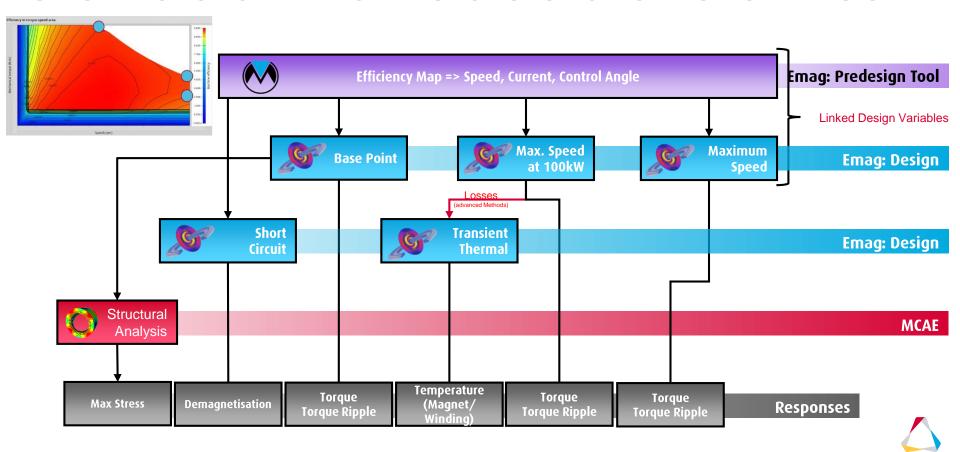
Objective: Maximize Torque

Constraints:

Efficiency, Stress, Temperature, etc.

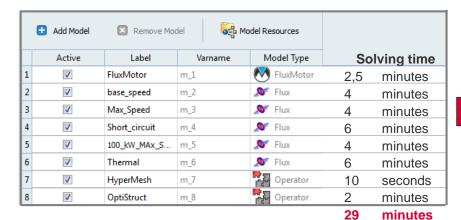
Validation

Better Objective Results Study Result: **Improved Design Balance**


Preprocessing

Execute DOE

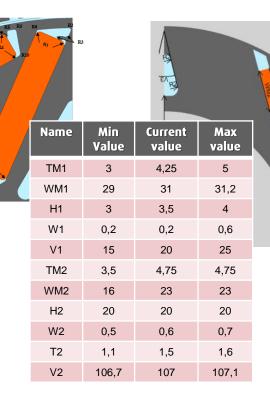
Postprocessing



SIMULATIONS TO EXTRACT RESPONSES FOR ONE SINGLE DESIGN

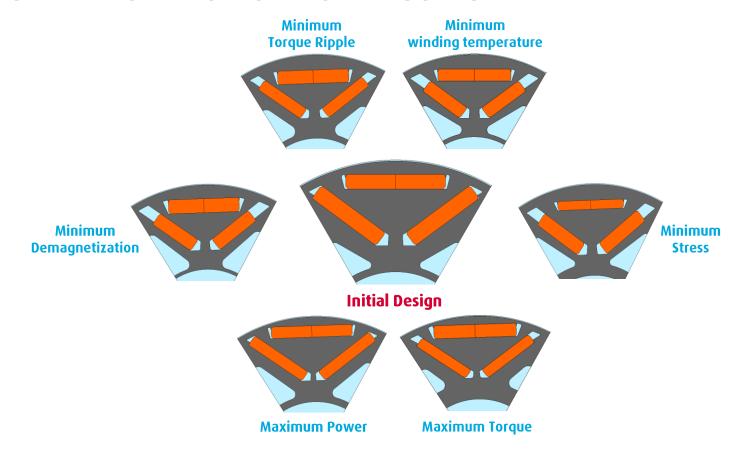
OPTIMIZATION OUTLINE

Summary of Optimization Problem in HyperStudy



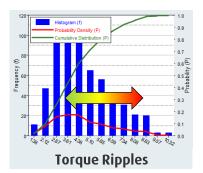
DOE Study

- 18 Design Variables
- Approximately 400 runs
- 18h with 15 cores in parallel



Design Space

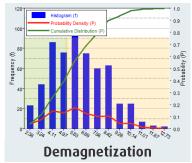
DESIGN EXPLORATION ON DOE RESULTS

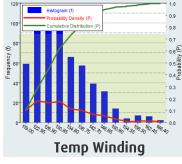




GLOBAL OPTIMIZATION

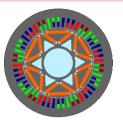
2 Objectives


- Min Torque Ripples
- Max Power


4 Constraints

- Demagnetization < 5 %
- Base torque >= 150 Nm

- Temperature winding <180°C
- Max stress <= 500 Mpa



E-MOTOR OPTIMIZATION PROBLEM – FINAL RESULTS

	Initial
Base torque [Nm]	155
Base torque Ripple [Nm]	8,5
Stress [Mpa]	2.316
Winding Temp. [°C]	171
Demagnetization Factor	6,6

Optimization Objective:

- Maximize base output Power
- Minimize base Torque Ripple

Constraints:

- Stress lower than 500 MPa
- Winding Temperature lower than 180°C
- Demagnetization lower than 5%
- Base Torque greater than 150 Nm

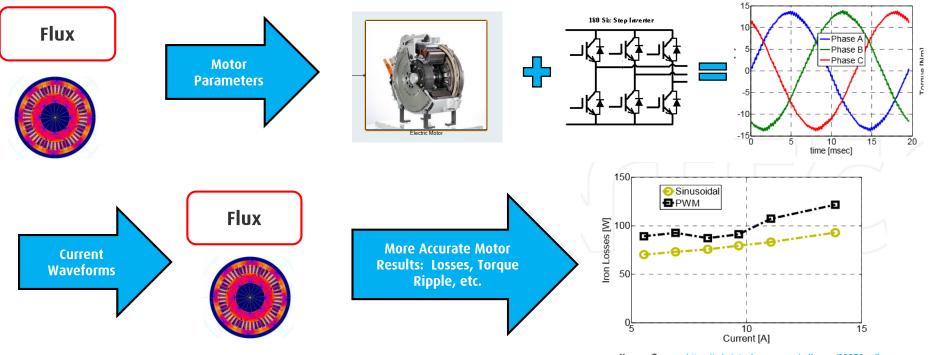
Magnet Weight Reduction of 40 %

PHASE 3 - CONSIDERATION OF POWERTRAIN COMPONENTS USING SYSTEMS MODELING -

Altair Simulation Driven Design

Porsche E-Motor Development Study

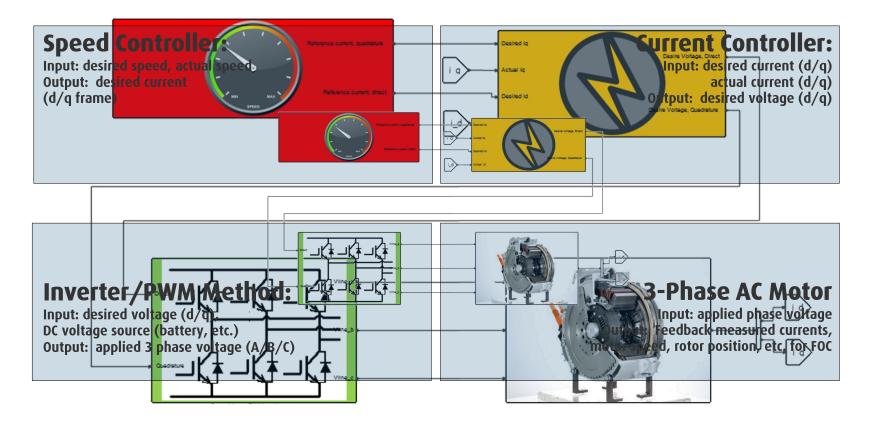
Phase 2


Phase 1

Phase 3

Summary & Conclusions

PROCESS: ACTIVATE INVERTER INPUTS TO FLUX

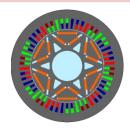


*Image Source: https://cdn.intechopen.com/pdfs-wm/39370.pdf See notes, next slide for details

Faster process than direct co-sim:
Use simplified motor model in Activate to generate steady-state current

FIELD ORIENTED CONTROL STEPS: OVERVIEW




E-MOTOR OPTIMIZATION PROBLEM - FINAL RESULTS WITH PWM

	Initial	Current Optimum With Sine Current
Base torque [Nm]	155	150
Base torque Ripple [Nm]	8,5	5,4
Stress [Mpa]	2.316	500
Winding Temp. [°C]	171	139
Demagnetization Factor	6,6	5,2

Magnet Weight Reduction of 40 %

(*) TEMPERATURES USING PWM CURRENT

	Initial	Current Optimum With Sine Current	Current Optimum with PWM Current (620V – 800V)
Joule losses (W)	4.220	2.266	2.272 – 2.278
Magnet losses (W)	143,6	58	141 - 164
Iron losses stator (W)	1.157	1.096	1.173 – 1.206
Iron losses rotor (W)	230	159	196 - 208
Temp. Rotor [°C]	Tmax 118	Tmax 87	Tmax 103 - 108
### High 15.000			

Added losses leads to 20 % higher temperatures in magnets and rotor yoke

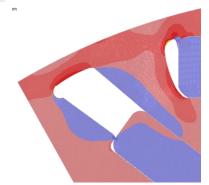
SUMMARY & CONCLUSIONS

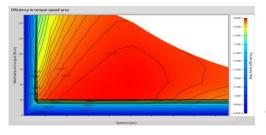
Altair Simulation Driven Design Porsche E-Motor Development Study

Phase 1

Phase 2

Phase 3


Summary & Conclusions



SUMMARY

- Multi-physics design optimization of an E-motor has been demonstrated including:
 - Predesign of motor
 - Electromagnetic analysis
 - Thermal analysis
 - Structural analysis
- Processes have been demonstrated to support early development, to support later multi-physics development and to support the integration with systems modeling approaches to consider the complete powertrain.
- The tools and the open APIs provide a very large flexibility to provide design processes which can be adapted to local customer requirements and suitable for integration into the customer design process.

	♣ Add Model Resources			
	Active	Label	Varname	Model Type
1	✓	FluxMotor	m_1	M FluxMotor
2	V	base_speed	m_2	≫ Flux
3	▽	Max_Speed	m_3	
4	V	Short_circuit	m_4	≫ Flux
5	▽	100_kW_MAx_S	m_5	
6	V	Thermal	m_6	
7	V	HyperMesh	m_7	Operator
8	V	OptiStruct	m_8	Operator

