

Perception et contrôle : stratégies de tests et moyens de simulation pour le véhicule autonome

Xavier FORNARI ANSYS Systems

Physical miles driven necessary for L2-L5 validation

Akio Toyoda, President of Toyota @ Paris Auto Show *"It is estimated that some 8.8 billion miles of road testing, are required"*

RAND – Driving to Safety Study 275M fault free miles needed to achieve equivalent safety to human driver

https://www.electronicdesign.com/automotive/testing-unknown-real-problem-autonomous-vehicles

Demonstrating Safety is the Critical Engineering Challenge

Exclusive research by ANSYS and SAE

The SAE Automotive Industry Survey Confirmed:

"Public Confidence and Adoption" is the number 1 barrier to the widespread adoption of fully autonomous vehicles

Demonstrating Safety is the Critical Engineering Challenge

ANSYS addresses all key elements of autonomous vehicles

ANSYS Digital Safety Solutions for ADAS/AD

SIMULATION PROCESS AND DATA MANAGEMENT

ANSYS Digital Safety Solutions for ADAS/AS

ANSYS AV Technology Stack

Functional Safety & Cybersecurity Analysis

6

1

Closed-Loop Simulation

4 Control Software

5 Automated Driving Software

Vehicle Platform

Safety of ADAS/AD Systems

FuSa vs. SOTIF

FuSA

- Addresses safety

 of the E/E control
 system
- Hazards induced by system failures (e.g. control software bug, bit flip in memory, etc.)

SOTIF

- Addresses safety of the complete ADAS/AD
 System *incl.* sensors and (AI-based) perception software
- Specific interest in Hazards due to limitations (e.g. weather conditions, radar echoes due to metallic bridge, etc.)

Methods in the FuSa and SOTIF Processes

ANSYS provides a model-based, system oriented solution for functional safety analysis (FuSa)

Architecture Modeling is common for FuSa and SOTIF: Highway Autopilot example

SOTIF Hazard Analysis and Risk Assessment (HARA): Establishing functions and malfunctions for the Highway Autopilot example

Scenario Analysis 🛋 🗔										
type filter text										
Location	Environment	Operation Mode of Item	Traffic and People	E (Combined Exposure)	Malfunctioning Behaviour	Hazard	Severity			
Motorway	Daytime, dry and sunny	Highway Pilot active, speed controlled (free running)	Other car overtakes, merges in and immediately after brakes strong	E2	[MF-049] No emergency braking reaction on close motor vehicle.	Crashing into passenger	S3			
Motorway	Daytime, dry and sunny	Highway Pilot active, speed controlled (free running)	Other car overtakes, merges in and immediately after brakes strong	E2	[MF-056] Emergency braking comes late or is too weak	Crashing into passenger car from behind (high delta speed)	S2			
Motorway	Daytime, dry and sunny	Highway Pilot active, speed controlled (free running)	Other car, truck or motorcycle following closely behind	E4	[MF-110] Unjustified strong braking	Following car crashes into ego car from behind (high delta speed)	S3			
Motorway	Night time, heavy rain	Highway Pilot active, speed controlled (free running)	Motorcycle on ego lane	E2	[MF-049] No emergency braking reaction on close motor vehicle.	Crashing into motorcycle	S3			
Motorway	Night time, heavy rain	Highway Pilot active, speed controlled (free running)	Motrocycle on ego lane	E2	[MF-049] No emergency braking reaction on close motor vehicle.	Orashing into motorcycle	S3			

Safety Concept is improved; Requirements are refined

Functional Requirements:

Initial iteration: imported from normal function development (medini offers interfaces to all major requirements engineering tools) Following iteration (system improvement): derived from safety analysis (e.g. FTA events)

SOTIF Triggering Conditions Analysis: Building in medini Scenarios to be simulated in VRXPERIENCE

ANSYS AV open and customizable simulation environment

ANSYS addresses all key AV sensors

Three phases for each sensor

© 2019 ANSYS, Inc.

Camera: Simulation from component design to full scenarios

Component Development

Optical, Thermal, Structural

Design & Analysis

Vehicle Integration

Vision Performance Analysis Position Optimization

Scene Simulation

Vision System

Test & Validation

Camera

Camera: Simulations in adverse weather conditions

Headlamp outer lens with water droplet build-up

Headlamp outer lens with 3M hydrophobic film

Camera: Real world fault detection - solar glare

Camera

Traditional Rendering Engine

Sensors Fails No Sun Glare Detected

Requires further physical testing on road

ANSYS's Physically Accurate Simulation

LiDAR: Real world fault detection - paint colors

Radar: Real world fault detection - guardrails

Radar Sensor Perception

ANSYS AV open and customizable simulation environment

3D world model & preparation

Support any process able to capture real world into simulation with very high fidelity road database and photorealism.

Key Features

- Ease the creation of 3D road environment
- openDrive compliant
- Import map data : OpenStreetMap, Here...
- Trim the world from libraries
- Set physics-based materials from libraries

Use case

- Create high fidelity 3D world model
- Automate 3D world model creation for quick and fast simulation test

Example: Tomtom HD map import

Scenario & Traffic

Key Features

- Bring ego car into a multi-agent simulated traffic model
- Traffic model based on AI able to generate any kind of traffic situations.
- Create scenario via script or GUI
- Automation of scenario from Test Plan.
- Large asset of car, trucks, motorbike, pedestrians, animals...

Use case

- Create dynamics driving scenario
- Create variability of scenario
- Automate scenario creation for massive simulation test

Sensors

Key Features

 Ideal or physics-based model of Camera, Radar, Lidar, Ultrasonic sensors

Use case

- Model the ideal or physicsbased behavior of sensors

- Develop and test:

perception, planning and control algorithm (physics-based)

<u>or</u>

- planning and control isolated from perception (ideal)
- Test ADAS feature robustness

Scenario Re-Creation From Real Data : Left turn in Pittsburgh

Scenario Variation using ANSYS optiSLang (Dynardo)

The goal is to perform robustness and reliability analysis for <u>parameterized driving</u> <u>scenarios</u> in a way that is much more efficient than Monte-Carlo Simulation.

Example of Scenario Variations (Jam-End, 9 parameters)

	Number of samples	Failure probability	Coeff. of variation	Reliability index
Limit TTC = 0.4				
MCS	39.420.000	$2.54*10^{-6}$	10.0%	4.56
AS	16.000	$2.81*10^{-6}$	9.1%	4.54
ISPUD+FORM	7.000 + 5.500	2.31*10 ⁻⁶	9.5%	4.58

28,500 simulation runs using optiSLang*vs.*39.420.000 using Monte-Carlo simulation

ANSYS SCADE provides a model-based software development flow with ISO 26262 certified code generation and AUTOSAR compliance

Closed-loop simulation of full AV stack (Software-in-the-loop)

- Physics-based sensor models allow testing of full AV software stack
- Run real-time asynchronous or externally synchronized simulation
- Distribute computing and rendering node on several CPU or GPU
- Massive simulation on HPC

Why are edge cases a problem?

False Alarm Rate

Perhaps your autonomy can detect 999 out of every 1,000 images with pedestrians that walk on two legs.

But what if it only detected 700 out of every 1,000 images with pedestrians that use wheelchairs?

P (accident | wheelchair) should be the same as P (accident | walker)

There are many more edge cases 😣 !

Finding and identifying the root causes of these edge cases

{ "sun glare", "guardrail" }

{ "sun glare", "guardrail" }

Root causes ("triggering events" per SOTIF) can be hypothesized, validated, mitigated, and verified.

Some Root causes can be surprising

These results are from open-source neural networks. Your mileage may vary.

SCADE Vision (Powered by Edge Case research) filters through huge data sets to identify real-world edge cases and safety risks

© 2019 ANSYS, Inc.

Perception testing (HiL Simulation/Closed loop)

5.1 Perception testing (Open Loop)

Perception testing (Closed Loop)

Safe Software Architecture must be designed for Integrating Neural Networks (Planning)

Can safety be guaranteed when using neural nets and machine learning?

<u>No</u>

Lack of controllability implies a high ASIL level and demands changes to safety concept

Because it is not possible to trace decisions backward through a neural net and connect them to higher level requirements

A safe software architecture is essential whenever neural nets are used

© 2019 ANSYS, Inc.

Safe Software Architecture for Integrating Neural Networks

Source: Carnegie Mellon University

Sensors

5

6

2

3

Closed-Loop Simulation

Bringing it all together

Automated Driving Software

Vehicle Platform

Vehicle Dynamics

Vehicle Dynamics

Key Features

 Complete accurate multi-body vehicle dynamics in VRXPERIENCE Driving Simulator

 \underline{Or} – connect any custom vehicle model through FMI, C/C++, ANSYS Twin Builder

- Car, Truck and off-road vehicle models
- Consider road friction variation and wind

Use case

- Bring accurate vehicle dynamics model in the loop
- Accurate dynamic simulation with driver in the loop

Summary

Summary: Connecting Real-Real World Driving and Simulation to Achieve Safety of Autonomous Driving

