

E-Mobility Solutions

Comment améliorer les échanges emotor-batterie, l'optimisation des rendements et l'éfficacité des véhicules grace à des solutions innovantes de mesure et de moyens d'essais.

Automotive connection- October 2019

Contacts: Marc SECRETIN 0658082247 Michel MAZZOLA

- Founded in 1988
- Head office and production in Berlin, Germany lacksquare
- Subsidiaries in China, Austria, Switzerland, France, Benelux and USA
- Approximately 200 employees (thereof ca. 60% developers and engineers)
- Cooperation with 25 companies in 28 countries
- More than 100 patents

Management: imc Berlin & Frankfurt

What is our business?

imc solutions

From the sensor -> data acquisition system -> analyses -> results -> report

Sensor Voltage & high $Current$ $Temperature$	$\left[\begin{array}{c} \hline \\ Frequency \\ strain \end{array} \right] \left[\begin{array}{c} \hline \\ Frequency \\ speed/angle \end{array} \right] \left[\begin{array}{c} \hline \\ Digital input/ \\ output \end{array} \right] \left[\begin{array}{c} \hline \\ Frequency \\ Other \\ output \end{array} \right] \left[\begin{array}{c} \hline \\ Frequency \\ Frequency \\ Other $
Data acquisition system	
Data analyze	
Your application	

4

© imc Meßsysteme GmbH

eMobility New Tasks: the application's view

Classical testing tasks

- Brake performance Chassis systems (ABS, ESP)
- Handling / vehicle dynamics
- Durability, endurance
- HVAC (Heating, Ventilation, Air Condition)
- Driving performance, torque
- Fuel consumption
- NVH (Noise Vibration Harshness)
- Exhaust emissions
- ...

New tasks with eMobility

- Interplay with charging infrastructure
- Battery performance and safety
- Cooling and heating of electrical subsystems
- Power converter performance
- eMotor performance

...

- Interplay with drive battery
- Interplay of mechanical and electrical brakes, recuperation
- Electrical energy consumption
- Subjective human experience (drive comfort)

eMobility Issues

New questions: Tasks and applications for test and measurement

Temperature measurement

- Battery systems, drives, power electronics, connectors, ...
- Temperature is relevant for stress and wear, performance, efficiency, heat management, overload,...
- High channel count, robustness, HV environment

State of charge, efficiency, Energy flow

- Charging performance, charge gauge, balance, efficiency as a function of temperature
- Charging stations with connectors, cables, metering, DC/DC converters...
- DC intermediate Power bus, recuperation, hybrid concepts
- Voltage, current, DC power

Current measurement in vehicle electrical systems

- Current transducers, LEM-transducers, Shunts, AC/DC mode
- From Leakage to full power, range dynamics, energy consumption of ECUs and sub systems
- IHR Autoranging

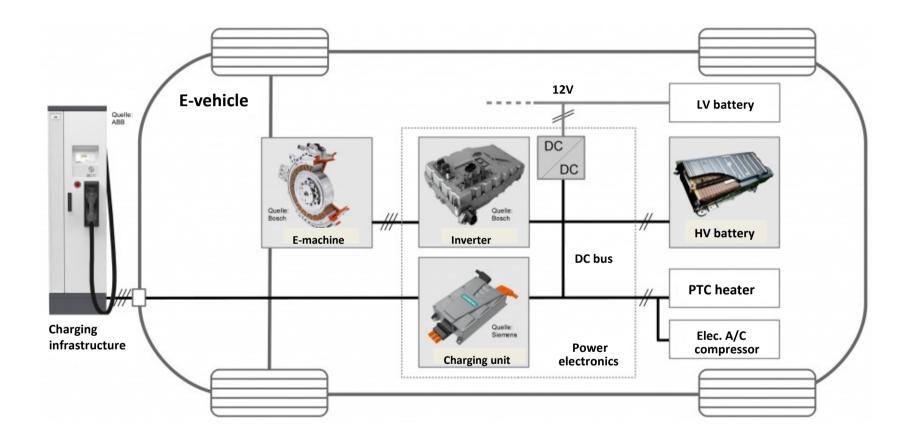
eMobility Issues

New questions: Tasks and applications for test and measurement

Power

- AC and high frequency: Power converter (Inverter), DC/DC, drives
- Mechanical vs. electrical power efficiency
- Active and reactive power

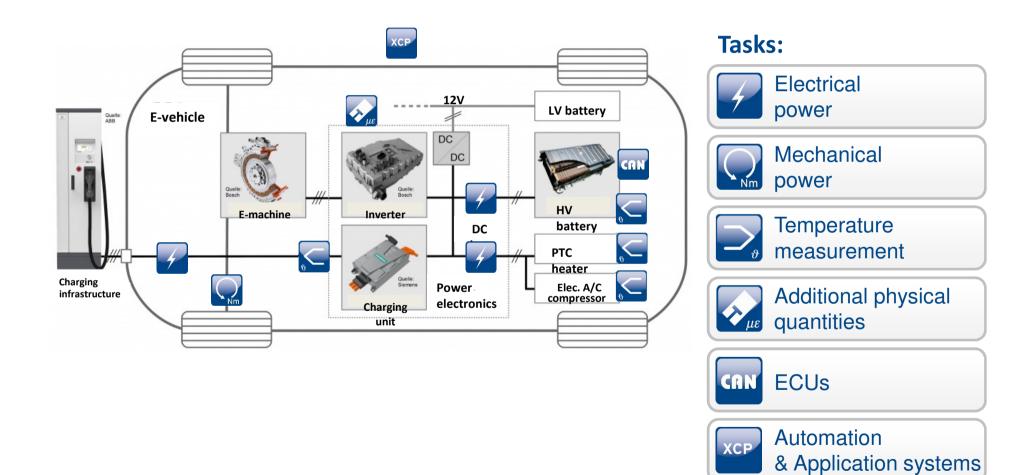
E-Drives test bench


- o eMotor test, BLDC, Parameter Identification (PI-method)
- EoL test stands
- Development test stands for systematic analysis and optimization

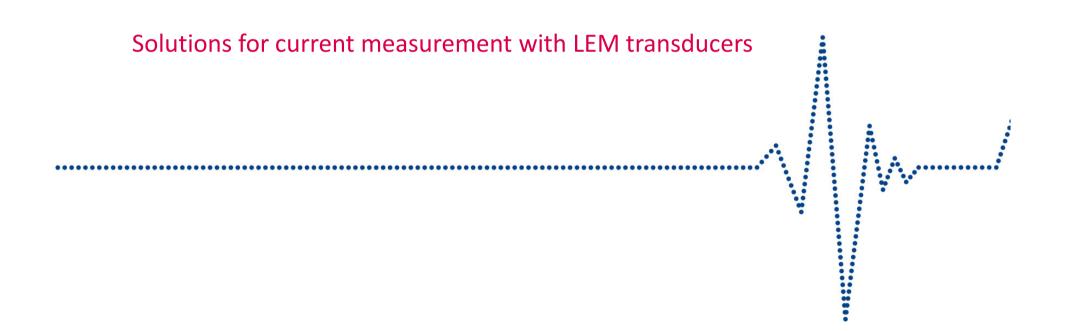
Telemetry

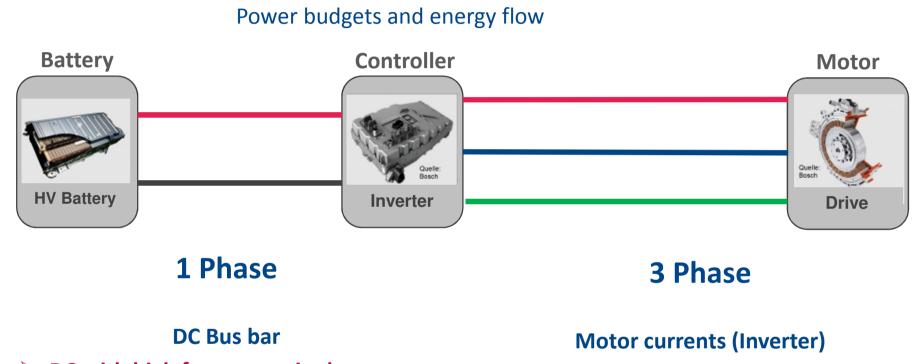
- Rotating parts / shafts and inaccessible components
- Radio / Fiber-Optic and battery based solutions
- Mechanical power
- Integration into multi-channel multi-domain data acquisition (analog, digital, fieldbus...)

Typical Full Electrical Vehicle Sub-Systems and functional units



Measurement Tasks


Electrical and hybrid vehicles



E-Mobility Solutions

eMobility: Current and Power Measurement Imc

Typical application with vehicle testing

> DC with high frequency ripple stability/precision & high bandwidth

some 100 Hz + 30 kHz PWM, high bandwidth

New requirements and challenges

Driven by technological changes

DC accuracy and general precision

- improved efficiency
- Challenging fraction of % improvements... → ppm precision and stability

Bandwidth

- modern Wide-Bandgap power semiconductors SiC/GaN
- increasing PWM frequencies \rightarrow >= 30 kHz

Large current ranges

- Larger hybrid- (HEV) and fill electric vehicles (FEV): SUV, bus, truck
 - ightarrow up to 500A / 1000 A

Robustness

• Field testing, competitor product analysis ... → compact, wide operating temperature range

12 28.10.2019

Current: with flux gate transducers

Ring type transducers and current clamps based on flux gate technology

Modern flux gate transducers

Ring type transducer ("pass-through")

- Compact installation
- Test stand applications

Current clamp transducer

- No breaking of load circuit required for installation
- E.g. examination of standard mass product specimen (competitor vehicles etc.)
- More expensive than ring type

Both types

- High-End: High bandwidth and extreme precision
- Active transducers that require +/-15V supply @significant power

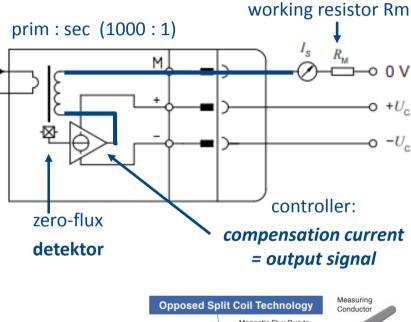
IMC

Working principle of flux gate transducers

Compensation type transducers: Hall vs. high end flux gate

Compensation current transducer

Principle


- Magnetic flux differential: Primary current compensation
- Controller forces flux \rightarrow 0 : zero-flux compensation
- Output signal: compensation current * working resistor
- Controller compensates non-linearities of flux sensor

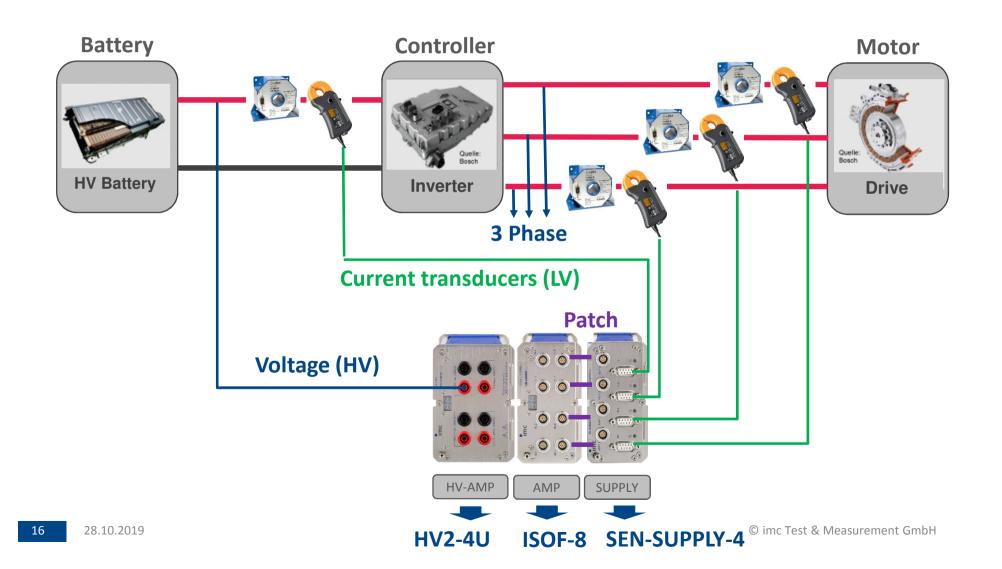
Hall compensation transducer (established)


- Hall sensor as flux detector
- Limited bandwidth, DC stability and drift

Flux gate transducer ("new")

- Flux gate used as detector
- Bandwidth up to 1 MHz, extreme precision and stability (ppm)

Imc


Supply for LEM and current clamps

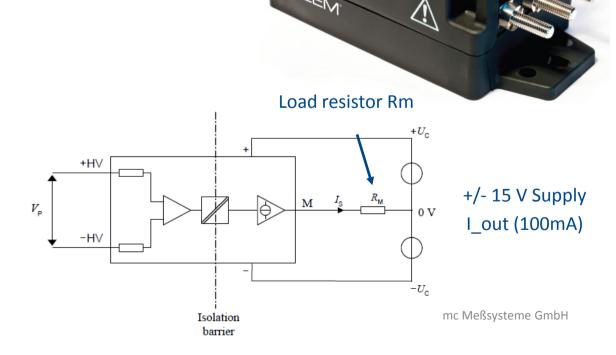
CRFX/SEN-SUPPLY-4: Current and power measurement (U/I/P)

HV voltage probe transducer

Example: LEM DVL 750

Alternative solution instead of native HV amp

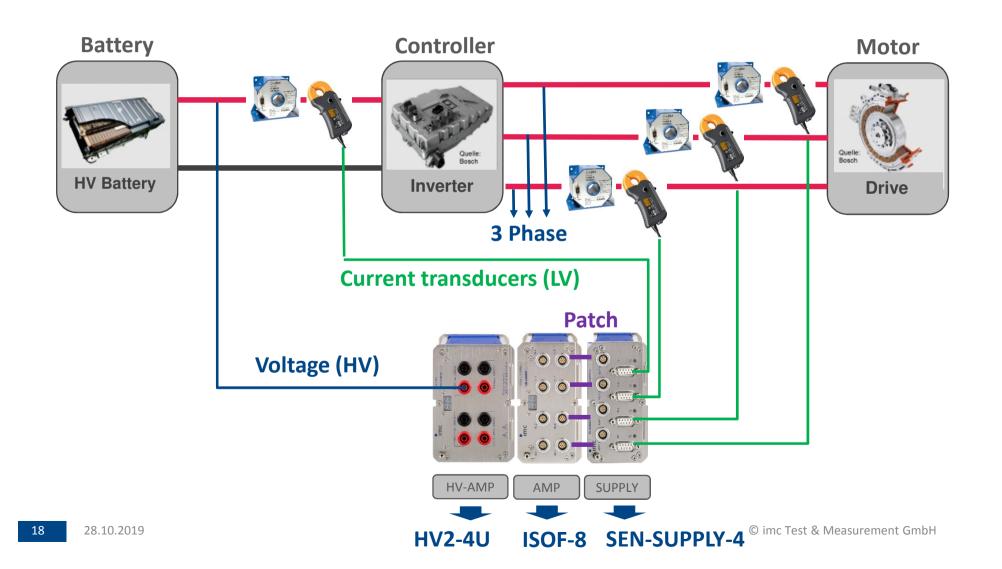
HV voltage probe


- HV isolation
- Conversion to low voltage (+/-10V)

Interfacing

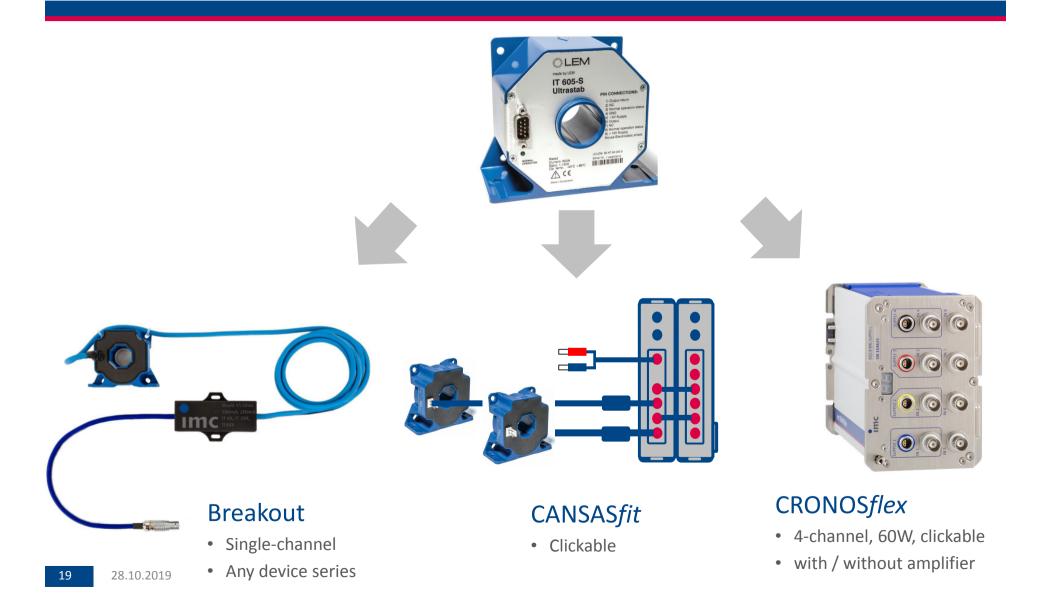
- Equivalent to LEM current transducers
- +/- 15V (3 W) Supply
- 75 mA out, 50..100 Ω load resistor
- Acquisition with non-isolated LV amp

Key specs


- 1125 V (iso testing with 8.5 kV)
- 8 kHz (-1 dB)
- 0.5 % accuracy

Diapositive 17

MR1 Martin Riedel; 27/08/2018



Solutions for LEM-Interface (Supply)

Single-channel / multi-channel / stand-alone / incl. amp

Electric system testing by using breadboard car

APP PREVIEW

Test of electrical systems on automotive dashboard

Modern vehicles are integrating more and more electrical systems. Current measurement is necessary to optimize these electrical systems

- Quiescent current
- Nominal current
- Intelligent energy management when waking up components
- Powering sequences

Goal Test of electrical systems on automotive dashboard

- DC current measurement in low voltage ٠
- Handling of very low (50 nA) and very high (50 A) current in a single measurement I Need for a • very large dynamic range of measurement
- Exact measurement of peak values during switching events •
- Accurate measurement of the event triggering this switching •
- Low impedance needed to minimize influence •
- Possibility to connect small and large diameter wires •

- Slides on a backplane in 19" rack
- Backplane has high-current terminals (solder or spring)
- Output on CAN bus → integration into any measurement/control system easy
- Output rate 1 Hz or 10 Hz
- Internal sampling rate 30 kHz
- Shunt switching within $1 \mu s / 1 ms$
- Max. current slope 10 A/µs
- Output information:
 - Average of each interval
 - Min & max in each interval
 - Location of peaks in interval

Realizing high dynamic range

30 nA ... 30 A \rightarrow 180 dB / 30 bit

I.	Sleep Mode	Operating Power Mode	Shunt range	ADC resolution
	30 A (range limit)			
30 A				
x 1000	60 mA		2 mC	9 Bit
30 mA				H Bit
x 1000				Bit 24 30 Bit
30 μΑ			2 Ω	
x 1000	\sim			2
30 nA				\bullet
			, , , , , , , , , , , , , , , , , , ,	
	Leak current, Stand-By, Supply, Low Power	Operational mode, efficiency, overall current		

E-Mobility Solutions

Solutions with telemetry

eMobility and Telemetry

What particular issues can be solved with telemetry?

Difficult access

- Inaccessible locations and objects
- Rotating parts

HV Isolation

- Autarkic solutions: "island HV-Zone"
- Can avoid expensive HV-suited equipment (sensors & devices)

Typ. examples

- Mechanical power of rotating shafts
- Autarkic battery-powered units
- Radio and Fiber-optic transmission
- Intelligent sensor subsystems based on telemetry: Wheelforce-Transducer

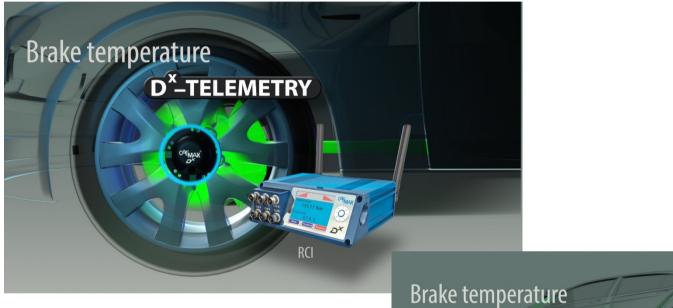
D[×] telemetry

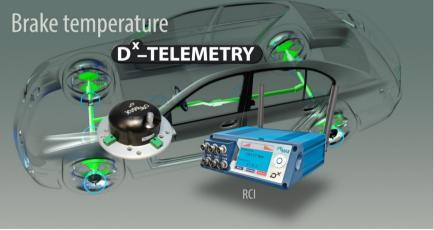
Technical data

- Up to 4 transmitters
- 16-Bit digitized signals
- 868 MHz- or 2.4 GHz-Band
- Analog outputs or CAN bus
- Power supplies:
 Inductive, battery or rechargeable
- Up to 6 channels per transmitter:
 - Strain gauge, temperature, acceleration
- Sampling rate SCT summary: Max. 4.6 kHz (868 MHz) Max. 5 kHz (2.4 GHz)
- Sampling rate RCI summary: Max. 7.2 kHz (868 MHz) Max. 8 kHz (2.4 GHz)

Connection to imc:

- CAN bus
- Analog output





© imc Test & Measurement GmbH

Temperature measurements at the wheel

Temperature at the wheel

- Measure brake disc temperature
- Measure tire temperatures

Technical data

- Up to 4 wheels can be synchronously acquired
- Temperature acquisition integrated in proven wheel holder
- Remotely triggered sensor breakage detection
- 3 or 4 thermocouples per wheel, differential acquisition with integrated thermal reference point
- Type K or Type J thermocouples standard (others by request)
- Universally applicable. Mountable on all wheel bolts.
- Measuring time with integrated battery approx. 50 hours

Connection to imc:

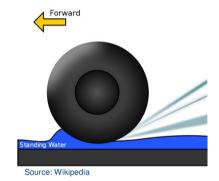
- CAN bus
- Analog output

© imc Test & Measurement GmbH

imc

Aquaplane recognition at the wheel

Speed detection at the wheel


- When the wheel is floating, the rotation rate changes
- With this change of rate, the exact time of aquaplaning is recognized

Technical data

- Up to 4 wheels can be synchronously acquired
- Speed acquisition integrated in proven wheel holder
- Speed measurement by MEMSbased rotation rate sensor
- Up to 7,200 rpm
- Shock resistant up to 10,000 g
- Accuracy 0.5% of measured value from 500 rpm, below < 2.5 rpm
- "Older" SCTs retrofittable

Connection to imc:

- CAN bus
- Analog output

- Stator mounting on wheel not
- necessary
 No annoying cables necessary (time saving and safety)
- Small size, quickly mounted
- Universally applicable. Mountable on all wheel bolts.
- Minimum 8 h running time with integrated battery
- IP 68
- Bandwidth 16 Hz per channel (output)

© imc Test & Measurement GmbH

imc

Power measurements on drivetrains

Power measurement on axles

Technical data

- up to 4 units can be synchronously acquired
- Synchronous acquisition of speed and torque integrated in proven half-shell housing
- Internal power processing in RCI
- RPM measurement by MEMSbased rotation rate sensor
- Up to 7,200 rpm
- Shock resistant up to 10,000 g
- Accuracy 0.5% of measured value from 500 rpm, below < 2.5 rpm
- "Older" SCTs retrofittable

Connection to imc:

- CAN bus
- Analog output

 $\mathbf{P} = \mathbf{2\pi} \cdot \mathbf{n} \cdot \mathbf{M}$

M = Torque

© imc Test & Measurement GmbH

eMobility and Telemetry

Efficiency of drive trains

Efficiency

$$\eta = \frac{P_{out}}{P_{in}} \qquad = \frac{P_{mechanic}}{P_{electric}} \qquad = \frac{2 \pi n * N}{U * I}$$

• P_{electric}

- Power meter (LV, HV)
- P_{mechanic}

rpm assessment

- Classic solution: incremental encoder / pulse counter
- alternative: acceleration (no stator required!)

Telemetric solution with caemax Dx

- Telemetry on rotating shaft
- Integrated solution for torque (STRG) und *rotation rate (MEMS based yaw gyro)*
- *fully synchronous, internal power calculation* 28.10.2019

 $\mathsf{P}=2\pi\cdot\mathsf{n}\cdot\mathsf{M}$

mc

P = Power n = rpm M = torque

Power measurements on drivetrains

eMobility and Telemetry

Mechanical power with caemax Telemetry Dx

Benefits of the caemax Dx solution for test stand and mobile testing

- Fully synchronous, online *power calculation in telemetry receive*r
- No stator involved for rotation sensor, no fixed points
- Insensitive to shock, vibration and lateral acceleration
- MEMS Gyro (Micro Electro-Mechanical System) based on Coriolis force, comp structure, capacitance variation...
- Up to +/- 7200 rpm, accuracy 0.5 %, -40 ... +85°C, IP67
- Power supply inductive or battery
- Mounting: *no changes to original shaft component*!

robust and sealed half shell case

© imc Meßsysteme GmbH

Thanks for your attention!

More information: www.imc-france.com

